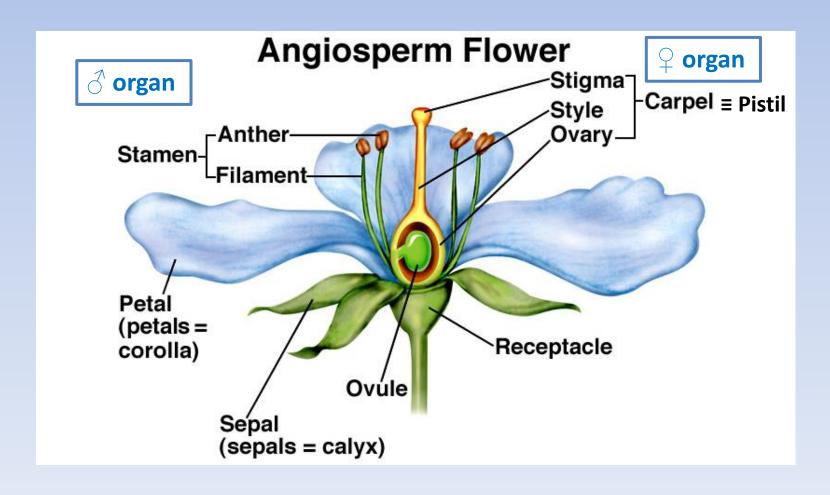
# Pollinators: who are they, what is their status, and what can we do to protect them?



Christelle Guédot


UW Department of Entomology





#### **Pollination definition**

In flowering plants, transfer of pollen grains from anther (male part) to stigma (female part); must be pollen of same species



## Why is pollination important?

#### 1. Ecological

~80% of flowering plants rely on animals for gene transfer (seed and pollen). Fruits and seeds comprise ~25% of diets of birds and mammals; so lack pollination means scarce resources

#### 2. Agricultural

Insects pollinate ~2/3 of world's crops account for 1/3 of food we eat

# 3. Economics of insect pollination~\$15 billion per year to the US economy\$217 billion worldwide (Science Daily 2008)



# **Major insect pollinators**



> 70% flowering plants (~250,000 spp.) require an insect to move pollen

# Most important insect pollinators: Bees

- 1. Feed on nectar and pollen
- 2. Pollen collecting structures (scopa, corbicula)
- 3. Display floral constancy

http://www.natures-

desktop.com/images/wallpapers/1600x1 nsects/bee-collecting-pollen.jpg









# Bees: distinguishing characteristics

Bees

Robust

Hairy

Flat rear legs

Feed on nectar and pollen

VS.

Wasps

Slender

**Smooth** 

Slender legs

**Predators** 

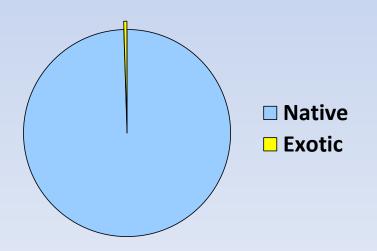




# Why are bees important?

Whole foods and Xerces Society "Share the Buzz" campaign (2013)




#### Bees

- At least 25,000 known species of bees (more than birds and mammals combined!)
- Social vs. solitary, 90% being solitary
- ~4,500 solitary spp. in North America
- Wisconsin: ~400 spp.





Smallest North American bee (*Perdita minima*) on largest female carpenter bee



## The honeybee

Apis mellifera: the "honey-bearing bee"

Honeybees account for 84% of all insect pollination



honeybee
(Apis mellifera)

worker
queen

© 2006 Encyclopædia Britannica, Inc.

- 7 species of honeybees
- Western honeybee, Apis mellifera only species in North America
- Non-native, introduced in 1600s
- Social colonies founded by single queen
- Colonies are perennial
- Hive with typically 30 to 50,000 workers

#### **Bumblebees**

All bumble species in genus Bombus, meaning "booming"

- 250 known species (probably most discovered)
- 49 species in U.S. (18 species in WI)
- Social colonies
- Most abundant native pollinators of both crops and wild flowers







#### **Bumblebees**

- Social colonies founded by a single queen
- Nest in abandoned rodent burrows or under lodged grasses
- Colonies last only one season
- Only queen overwinters
- Nest may contain 100-300 workers
- Nests up to 12" diam and may have several entrances





# **Bumblebee and crop pollination**

- Active in cool and wet weather
- Buzz pollination makes them better pollinator of tomatoes, blueberry, cranberry, melons, cucumber, etc...
- Until 1980s, tomato pollination in glasshouses done by hand





# **Solitary bees**






# **Solitary bees**



# **Solitary bees**



# Life Cycle of a Solitary Bee

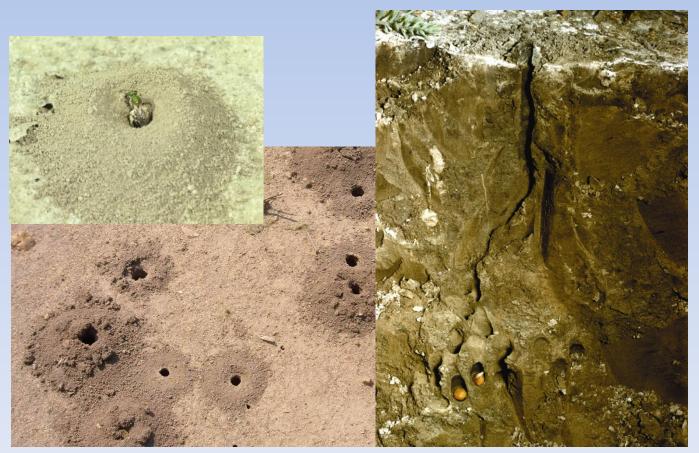


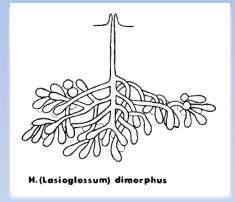


Mining bee (*Andrena* sp.): a year in its underground nest as egg, larva, and pupa before emerging to spend a few weeks as an adult.









Photos: Dennis Briggs

# **Ground-nesting solitary bees**

#### ~70% of native bee species nest underground

- Resemble ant-nests from above ground
- Nests may be as deep as 3'







# **Cavity-nesting solitary bees**

#### ~30% of native species nest in cavities

- Nest in hollow plant stems, old beetle borer holes, man-made cavities
- Artificially managed for some crops









# Native bee diversity in agriculture



# **Pollinator decline**

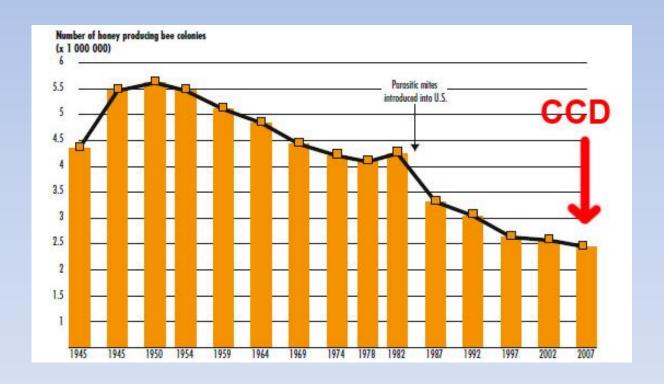


Politico: Bees bring new buzz to Capitol Hill

## Pollinator decline



#### **Colony collapse disorder: Honeybees**


In 2006, U.S. beekeepers reported losses of 30-90% of hives

Main symptoms: very low or no worker bees, queen is alive, with larvae present, and no dead bodies inside or in front of hive (thus hard to study potential causes...)



# Honeybees

Currently, estimated 2.62 million colonies of honeybees in USA



#### Pollinator decline

### Factors associated with honeybee declines:

- Arthropod pests and pathogens
- Poor nutrition
- Bee management practices
- Agricultural practices and pesticides
- Habitat fragmentation

Not a single factor, but a combination of factors

## Pests and pathogens

#### Parasitic mite: Varroa destructor

- Single most detrimental pest of honeybees
- Introduced from Eastern Asia and identified in U.S. hives in 1987
- Blood sucking parasites that also transmit viruses to bees
- Cause significant colony losses each year





## **Poor nutrition**

Monoculture, i.e. almond and other commercial crops provide no diversity of food



## Agricultural/residential practices

#### Nature Deficit Disorder

- Monocultures
- Lack of cover crops (natural fertilizers)
- Herbicides to kill off weeds (dandelion, clover, etc...)





In 2001, 11% of pesticides were used on lawns and 5% greenhouse gases produced by mowing our lawns

## Bee management practices

in order to pollinate different crops during their bloom time. This map shows three different possible routes of a commercial beekeeper.

Not uncommon for beekeeper to travel 37,000-40,000 miles per year to pollinate 4 or more different crop

#### COMMERCIAL POLLINATION ROUTES Blueberries Cucumbers Alfalfa Alfalfa Cranberries Apples Blueberries Alfalfa Cranberries Apples **Plums** Alfalfa Cherries Blueberries Sunflowers Cucumbers Avocados **Kiwis** Melons Cucumbers Because bees normally forage no more than one to three miles from their hive, commercial beekeepers move bees from one place to another

http://www.personcountybeekeepers.org

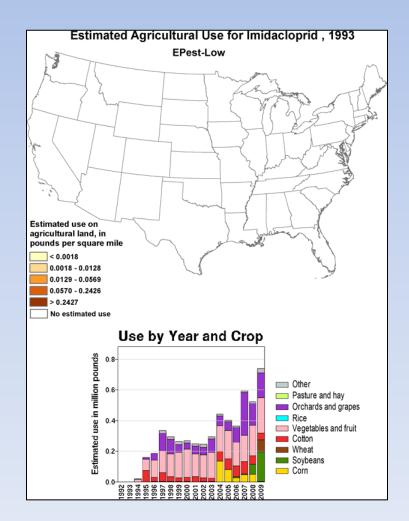
Pesticides: insecticides, fungicides, and herbicides (and adjuvants)

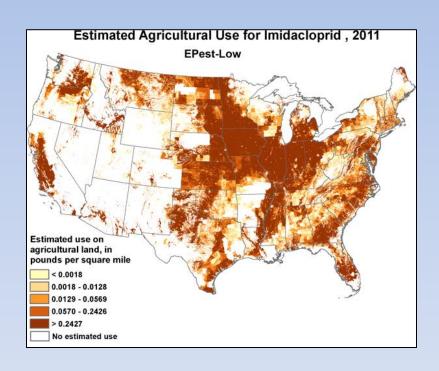


#### How do pesticides affect pollinators

- Lethal effects: acutely toxic to bees and result in death
- Sublethal effects: do not kill bees but affect performance that inhibit tasks such as olfactory learning, foraging, reproduction, longevity,...thus affecting colony health
- Synergistic effects: toxic effects when in combination with other pesticides




List of pesticides found in pollen on honeybees returning to hive


Fungicides
Herbicides
Insecticides

| Pesticide                               | Insecticide family                                 | LD <sub>50</sub> (ppm) <sup>a</sup> | Crops in which<br>detected <sup>c</sup> | Detections | Quantity detected,<br>mean±se (max) (ppb) | Relative risk (95%<br>CI) |
|-----------------------------------------|----------------------------------------------------|-------------------------------------|-----------------------------------------|------------|-------------------------------------------|---------------------------|
| Fungicides                              |                                                    |                                     |                                         |            |                                           |                           |
| Azoxystrobin                            |                                                    | >1,562.5 [64]                       | Cr, Cu, Wa                              | 10         | 60.3±25.6 (332)                           | 0.75 (0.56, 1.02)         |
| Captan                                  |                                                    | >78.13 [65]                         | Ap, Cr, Cu, Wa                          | 9          | 976.9±734.4 (13,800)                      | 0.59 (0.42, 0.81)†        |
| Chlorothalonil                          |                                                    | >1,414.06 [66]                      | Ap, Bl, Cr, Cu, Pu, W                   | /a17       | 4,491.2±2,130.7 (29,000)                  | 2.31 (1.35, 3.94)†        |
| Cyprodinil                              |                                                    | >6,125 [67]                         | Ap                                      | 3          | 996.9±707.5 (12,700)                      | 0.31 (0.15, 0.65)†        |
| Difenoconazole                          |                                                    | >781.25 [68]                        | Ар                                      | 3          | 171.4±119.4 (2,110)                       | 0.31 (0.15, 0.65)†        |
| Fenbuconazole                           |                                                    | >2,282.65 [69]                      | Ap, Cr, Cu                              | 10         | 227.3±89.2 (1,420)                        | 0.33 (0.23, 0.48)†        |
| Pyraclostrobin                          |                                                    | 573.44 [70]                         | Cr, Pu                                  | 4          | 2,787.1±1,890.1 (27,000)                  | 2.85 (2.16, 3.75)†        |
| Quintozene (PCNB)                       |                                                    | >0.78 [71]                          | Cr                                      | 2          | 0.3±0.3 (4.7)                             | 0.97 (0.59, 1.61)         |
| THPI                                    | Captan metabolite                                  |                                     | Cr, Cu                                  | 3          | 832.1±531.8 (9,470)                       | 0.42 (0.21, 0.82)†        |
| Herbicides                              |                                                    |                                     |                                         |            |                                           |                           |
| Carfentrazone ethyl                     |                                                    | >217.97 [72]                        | Cr                                      | 1          | 0.1±0.08 (1.6)                            | 1.05 (0.54, 2.05)         |
| Pendimethalin                           |                                                    | >388.28 [73]                        | Ap, Cr, Pu                              | 5          | 5.1±3.7 (69.5)                            | 1.47 (1.08, 1.99)†        |
| Insecticides                            |                                                    |                                     |                                         |            |                                           |                           |
| 2,4 Dimethylphenyl<br>formamide (DMPF)* | Amitraz (formamidine)<br>metabolite                |                                     | Bl, Cu, Pu, Wa                          | 10         | 171.5±117.0 (2,060)                       | 2.13 (1.56, 2.92)†        |
| Acetamiprid                             | Neonicotinoid                                      | 55.47 [60]                          | Ар                                      | 3          | 59.1±32.2 (401)                           | 0.31 (0.15, 0.65)†        |
| Bifenthrin                              | Pyrethroid                                         | 0.11 [74]                           | Pu, Wa                                  | 3          | 6.6±3.8 (53.1)                            | 2.08 (1.53, 2.83)†        |
| Carbaryl                                | Carbamate                                          | 8.59 [75]                           | Ap, Cu, Wa                              | 6          | 57.8±30.0 (403)                           | 0.42 (0.27, 0.66)†        |
| Chlorpyrifos                            | Organophosphate                                    | 0.86 [16]                           | Ap, Cr, Cu, Pu                          | 7          | 3.1±1.1 (15.5)                            | 0.89 (0.64, 1.23)         |
| Coumaphos*                              | Organophosphate                                    | 35.94 [16]                          | Bl, Cr, Cu                              | 6          | 2.2±1.0 (17.5)                            | 0.62 (0.43, 0.91)†        |
| Cyfluthrin                              | Pyrethroid                                         | <0.31 [76]                          | Cr, Wa                                  | 2          | 0.6±0.4 (5.4)                             | 1.31 (0.85, 2.02)         |
| Cyhalothrin                             | Pyrethroid                                         | 0.30 [77]                           | Ap, Pu, Wa                              | 7          | 14.6±7.9 (131)                            | 0.94 (0.69, 1.29)         |
| Cypermethrin                            | Pyrethroid                                         | 0.18-4.38 [78]                      | Cr                                      | 1          | 0.4±0.4 (6.9)                             | 1.05 (0.54, 2.05)         |
| Deltamethrin                            | Pyrethroid                                         | 0.39 [79]                           | Cr                                      | 1          | 4.5±4.5 (85.3)                            | 1.05 (0.54, 2.04)         |
| Diazinon                                | Organophosphate                                    | 1.72 [80]                           | Ap, Cr                                  | 3          | 1.4±1.0 (19.8)                            | 0.56 (0.32, 0.97)†        |
| Endosulfan I                            | Cyclodiene                                         | 54.69 [16]                          | Ap, Cr, Cu, Pu, Wa                      | 8          | 1.5±0.7 (12.9)                            | 1.60 (1.20, 2.14)†        |
| Endosulfan II                           | Cyclodiene                                         | 54.69 [16]                          | Ap, Cr, Cu, Pu                          | 6          | 0.8±0.3 (5.3)                             | 1.41 (1.04, 1.91)†        |
| Endosulfan sulfate                      | Endosulfan metabolite                              |                                     | Cr, Cu                                  | 4          | 0.3±0.2 (2.1)                             | 0.79 (0.52, 1.19)         |
| Esfenvalerate                           | Pyrethroid                                         | 0.13 [81]                           | Ap, Cr, Cu                              | 7          | 16.9±12.0 (216)                           | 0.51 (0.35, 0.75)†        |
| Fluvalinate*                            | Pyrethroid                                         | 1.56 [82]                           | Bl, Cr, Cu, Pu, Wa                      | 16         | 42.4±29.7 (570)                           | 2.43 (1.49, 3.96)†        |
| Heptachlor epoxide                      | Heptachlor <sup>b</sup> (cyclodiene)<br>metabolite |                                     | Cr                                      | 1          | 0.6±0.6 (12)                              | 1.05 (0.54, 2.04)         |
| Imidacloprid                            | Neonicotinoid                                      | 0.23 [83]                           | Ар                                      | 3          | 2.8±2.0 (36.5)                            | 0.31 (0.15, 0.65)†        |
| Indoxacarb                              | Oxadiazine                                         | 1.41 [84]                           | Ар                                      | 2          | 0.5±0.5 (9)                               | 0.28 (0.11, 0.73)†        |
| Methidathion                            | Organophosphate                                    | 1.85 [85]                           | Cr                                      | 1          | 1.6±1.6 (31)                              | 1.05 (0.54, 2.04)         |
| Methomyl                                | Carbamate                                          | <3.91 [86]                          | Wa                                      | 1          | 13.6±13.6 (259)                           | 1.54 (0.91, 2.61)         |
| Phosmet                                 | Organophosphate                                    | 8.83 [85]                           | Ap, Cr, Cu                              | 5          | 798.7±772.4 (14,700)                      | 0.36 (0.21, 0.61)†        |
| Pyrethrins                              | Pyrethroid                                         | 0.16 [16]                           | Cr                                      | 1          | 5.1±5.1 (97.4)                            | 1.05 (0.54, 2.05)         |
| Thiacloprid                             | Neonicotinoid                                      | 114.06 [60]                         | Ар                                      | 2          | 1.1±0.8 (12.4)                            | 0.35 (0.15, 0.82)†        |
| Control diets                           |                                                    |                                     |                                         |            |                                           |                           |
| BRL                                     | NA                                                 | NA                                  | NA                                      | NA         | NA                                        | 0.58 (0.23, 1.48)         |
| MegaBee                                 | NA                                                 | NA                                  | NA                                      | NA         | NA                                        | 0.74 (0.33, 1.67)         |

Pettis et al 2013 PlosOne 8: 1-9

- Imidacloprid (Admire) registered in 1994
- 1<sup>st</sup> neonic registered





US Geological Survey http://www.usgs.gov/

# Pesticides in your garden

| Examples of Neonicotinoid Garden Products Used in the United States |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Neonicotinoid                                                       | Garden & ornamental uses                                                                          | Garden product trademark names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Imidacloprid                                                        | granutes, injection, or spray to a wide range of ornamental plants, trees, and turf.              | Bayer Advanced 3-in-1 Insect, Disease, & Mite Control Bayer Advanced 12 Month Tree & Shrub Insect Control Bayer Advanced 12 Month Tree & Shrub Protect & Feed Bayer Advanced Fruit, Citrus & Vegetable Insect Control Bayer Advanced All-in-One Rose & Flower Care concentrate DIY Tree Care Products Multi-Insect Killer Ferti-lome 2-N-1 Systemic Hi-Yield Systemic Insect Spray Hunter Knockout Ready-To-Use Grub Killer Lesco Bandit Marathon Merit Monterey Once a Year Insect Control II Ortho Bug B Gon Year-Long Tree & Shrub Insect Control Ortho MAX Tree & Shrub Insect Control Surrender Brand GrubZ Out |  |  |  |  |
|                                                                     | Seed treatment, foliar spray or soil drench for turf, a variety of ornamental trees, and flowers. | Bayer Advanced All-in-One Rose & Flower Care granules<br>Green Light Grub Control with Arena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Thiamethoxam                                                        | 1 ,                                                                                               | Flagship<br>Maxide Dual Action Insect Killer<br>Meridian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Acetamiprid                                                         | . ,                                                                                               | Ortho Flower, Fruit and Vegetable Insect Killer<br>Ortho Rose and Flower Insect Killer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Dinotefuran                                                         | Soil drench or foliar spray to<br>leafy & fruiting vegetables, turf, &<br>ornamental plants.      | Green Light Tree & Shrub Insect Control with Safari 2 G<br>Safari<br>Transect<br>Zylam 20SG Systemic Turf Insecticide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

## **Pollinator habitat**



Rusty patched bumble bee Bombus affinis

Yellow banded bumble bee Bombus terricola

# Pollinator conservation and protection

- Provide variety of resources for seasonlong forage
- Provide habitat for ground-nesting and cavity nesters
- Protect pollinators from pesticide exposure (lowest risk, lowest concentration, avoid dusts and long residual products, spray at night)



### **Plants for Wisconsin**



## **Plants for Wisconsin**

#### **Woody plants**

- Redbud
- Apple
- Plum
- Basswood
- Wild rose
- Pussy willow
- Hawthorn
- Ninebark
- Raspberry
- Blueberry



